Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The deep image prior was recently introduced as a prior for natural images. It represents images as the output of a convolutional network with random inputs. For “inference”, gradient descent is performed to adjust network parameters to make the output match observations. This approach yields good performance on a range of image reconstruction tasks. We show that the deep image prior is asymptotically equivalent to a stationary Gaussian process prior in the limit as the number of channels in each layer of the network goes to infinity, and derive the corresponding kernel. This informs a Bayesian approach to inference. We show that by conducting posterior inference using stochastic gradient Langevin dynamics we avoid the need for early stopping, which is a drawback of the current approach, and improve results for denoising and impainting tasks. We illustrate these intuitions on a number of 1D and 2D signal reconstruction tasks.more » « less
-
We present multiresolution tree-structured networks to process point clouds for 3D shape understanding and generation tasks. Our network represents a 3D shape as a set of locality-preserving 1D ordered list of points at multiple resolutions. This allows efficient feed-forward processing through 1D convolutions, coarse-to-fine analysis through a multi-grid architecture, and it leads to faster convergence and small memory footprint during training. The proposed tree-structured encoders can be used to classify shapes and outperform existing point-based architectures on shape classification benchmarks, while tree-structured decoders can be used for generating point clouds directly and they outperform existing approaches for image-to-shape inference tasks learned using the ShapeNet dataset. Our model also allows unsupervised learning of point-cloud based shapes by using a variational autoencoder, leading to higher-quality generated shapes.more » « less
An official website of the United States government

Full Text Available